Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.926
Filtrar
1.
Arch Microbiol ; 206(5): 227, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642141

RESUMO

Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.


Assuntos
Bacillaceae , Bacillus thuringiensis , Inseticidas , Esporos Bacterianos/fisiologia , Inseticidas/metabolismo , Glutaral/farmacologia , Glutaral/metabolismo , Bacillus subtilis/metabolismo
2.
Pestic Biochem Physiol ; 200: 105844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582571

RESUMO

Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 µM, 0.15 µM, and 0.025 µM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Organotiofosfatos , Paraoxon/análogos & derivados , Piretrinas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Carboxilesterase/metabolismo , 60627 , Piretrinas/farmacologia , Piretrinas/metabolismo , Colinesterases , Resistência a Inseticidas
3.
Sci Rep ; 14(1): 7931, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575641

RESUMO

Phthorimaea absoluta is an invasive solanaceous plant pest with highly devastating effects on tomato plant. Heavy reliance on insecticide use to tackle the pest has been linked to insecticide resistance selection in P. absoluta populations. To underline insights on P. absoluta insecticide resistance mechanisms to diamides and avermectins, we evaluated the transcriptomic profile of parental (field-collected) and F8 (lab-reared) populations. Furthermore, to screen for the presence of organophosphate and pyrethroid resistance, we assessed the gene expression levels of acetylcholinesterase (ace1) and para-type voltage-gated sodium channel (VGSG) genes in the F1 to F8 lab-reared progeny of diamide and avermectin exposed P. absoluta field-collected populations. The VGSG gene showed up-regulation in 12.5% and down-regulation in 87.5% of the screened populations, while ace1 gene showed up-regulation in 37.5% and down-regulation in 62.5% of the screened populations. Gene ontology of the differentially expressed genes from both parental and eighth generations of diamide-sprayed P. absoluta populations revealed three genes involved in the metabolic detoxification of diamides in P. absoluta. Therefore, our study showed that the detoxification enzymes found could be responsible for P. absoluta diamide-based resistance, while behavioural resistance, which is stimulus-dependent, could be attributed to P. absoluta avermectin resistance.


Assuntos
Inseticidas , Ivermectina/análogos & derivados , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Mariposas/genética , Acetilcolinesterase/metabolismo , Diamida , Perfilação da Expressão Gênica , Larva
4.
PLoS One ; 19(3): e0299483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457466

RESUMO

In Nebraska USA, many populations of western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, now exhibit some level of resistance to all corn rootworm-active Bacillus thuringiensis Berliner (Bt) proteins expressed in commercial hybrids. Therefore, a study was conducted in northeast Nebraska from 2020-2022 to reevaluate current corn rootworm management options in continuous maize (consecutive planting for ≥2 years). Results from on-farm experiments to evaluate a standard soil-applied insecticide (Aztec® 4.67G) in combination with non-rootworm Bt or rootworm-active Bt pyramided maize (Cry3Bb1 + Gpp34Ab1/Tpp35Ab1) are reported within the context of WCR Bt resistance levels present. Corrected survival from Bt pyramid single-plant bioassays (<0.3, 0.3-0.49, >0.5) was used to place populations into 3 resistance categories. Variables evaluated included root injury, adult emergence, proportion lodged maize, and grain yield. Key results: A composite analysis of all populations across resistance levels indicated that addition of soil insecticide to Bt pyramid significantly reduced adult emergence and lodging but did not significantly increase root protection or yield. Within and among resistance category analyses of root injury revealed that the Bt pyramid remained highly efficacious at any non-rootworm Bt root injury level when resistance was absent or low. When corrected survival was >0.3, mean Bt pyramid root injury tracked more closely in a positive linear fashion with mean non-rootworm Bt root injury (rootworm density x level of resistance interaction). Similar trends were obtained for adult emergence but not yield. Mean Bt pyramid root injury rating was <0.75 in most populations with Bt resistance, which contributed to no significant yield differences among categories. Results are discussed within the context of IPM:IRM tradeoffs and the need to reduce WCR densities in this system to decrease the impact of the density x resistance interaction to bridge use of current pyramids with new technologies introduced over the next decade.


Assuntos
Bacillus thuringiensis , Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Besouros/genética , Zea mays/genética , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resistência a Inseticidas , Endotoxinas/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Solo , Larva/metabolismo
5.
Pestic Biochem Physiol ; 199: 105766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458675

RESUMO

Bemisia tabaci (Gennadius) is one of the most dangerous polyphagous pests in the world causing damage to various crops by sucking sap during the nymphal and adult stages. Chemical management of whiteflies is challenging because of the emergence of pesticide resistance. RNA interference has been well established in whitefly to study the functions of various genes. G-protein coupled receptors (GPCRs) are important targets for development of new generation insecticides. In this study, Ecdysis triggering hormone receptor (ETHr) gene expression was recorded in different stages of whitefly and its function has been studied through RNAi. The expression of ETHr is highest in third-instar nymphs followed by other nymphal instars, pupae and newly emerged adults. Silencing of ETHr resulted in significantly higher adult mortality (68.88%), reduced fecundity (4.46 eggs /female), reduced longevity of male and female (1.05 and 1.40 days, respectively) when adults were fed with dsETHr @ 1.0 µg/µl. Silencing of ETHr in nymphs lead to significantly higher mortality (81.35%) as compared to control. This study confirms that ETHr gene is essential for growth and development of whitefly nymphs and adults. Hence, it can be future target for developing dsRNA based insecticides for management of whitefly.


Assuntos
Hemípteros , Inseticidas , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Muda/genética , Reprodução/genética , Hormônios/metabolismo , Hemípteros/fisiologia
6.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458690

RESUMO

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Tornozelo , Rotenona , Besouros/genética , Besouros/metabolismo , Insetos/genética , Transcriptoma , Filogenia , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica
7.
Sci Total Environ ; 926: 171984, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547983

RESUMO

Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.


Assuntos
Afídeos , Inseticidas , Nanosferas , Animais , Inseticidas/metabolismo , Peixe-Zebra , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/toxicidade , Nitrocompostos/metabolismo , Afídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ampicilina
8.
J Bone Miner Metab ; 42(2): 242-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498197

RESUMO

INTRODUCTION: This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS: This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS: There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (ß) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION: In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.


Assuntos
Benzoatos , Doenças Ósseas Metabólicas , Inseticidas , Éteres Fenílicos , Piretrinas , Adulto , Humanos , Pessoa de Meia-Idade , Piretrinas/efeitos adversos , Piretrinas/análise , Piretrinas/metabolismo , Inseticidas/efeitos adversos , Inseticidas/análise , Inseticidas/metabolismo , Inquéritos Nutricionais , Estudos Transversais , Densidade Óssea , Teorema de Bayes , Exposição Ambiental/efeitos adversos , Doenças Ósseas Metabólicas/induzido quimicamente , Doenças Ósseas Metabólicas/epidemiologia
9.
Ecotoxicol Environ Saf ; 275: 116230, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552389

RESUMO

Epidemiological evidence on the health effects of pesticide exposure among greenhouse workers is limited, and the mechanisms are lacking. Building upon our team's previous population study, we selected two pesticides, CPF and EB, with high detection rates, based on the theoretical foundation that the liver serves as a detoxifying organ, we constructed a toxicity model using HepG2 cells to investigate the impact of individual or combined pesticide exposure on the hepatic metabolism profile, attempting to identify targeted biomarkers. Our results showed that CPF and EB could significantly affect the survival rate of HepG2 cells and disrupt their metabolic profile. There were 117 metabolites interfered by CPF exposure, which mainly affected ABC transporter, biosynthesis of amino acids, center carbon metabolism in cancer, fatty acid biosynthesis and other pathways, 95 metabolites interfered by EB exposure, which mainly affected center carbon metabolism in cancer, HIF-1 signaling pathway, valine, leucine and isoleucine biosynthesis, fatty acid biosynthesis and other pathways. The cross analysis and further biological experiments confirmed that CPF and EB pesticide exposure may affect the HIF-1 signaling pathway and valine, leucine and isoleucine biosynthesis in HepG2 cells, providing reliable experimental evidence for the prevention and treatment of liver damage in greenhouse workers.


Assuntos
Clorpirifos , Inseticidas , Ivermectina/análogos & derivados , Praguicidas , Humanos , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Praguicidas/toxicidade , Células Hep G2 , Leucina , Isoleucina , Carbono , Valina , Ácidos Graxos , Inseticidas/toxicidade , Inseticidas/metabolismo
10.
J Agric Food Chem ; 72(14): 7807-7817, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38514390

RESUMO

Mg(OH)2 was used as the nanocarrier of the Bacillus thuringiensis (Bt) Cry1Ac protein, and the synthesized Cry1Ac-Mg(OH)2 composites were regular and uniform nanosheets. Nano-Mg(OH)2 could effectively improve the insecticidal effect of the Cry1Ac protein toward Ectropis obliqua. It could enhance the damage degree of the Cry1Ac protein to intestinal epithelial cells and microvilli, induce and enrich the production of reactive oxygen species (ROS) in the midgut, and enhance the degradation of the Cry1Ac protein into active fragments. Furthermore, an anti-rinsing assay showed that the Cry1Ac-Mg(OH)2 composites were bound to the notch structure of the tea leaf surface. The retention of the Cry1Ac protein increased by 11.45%, and sprayed nano-Mg(OH)2 was rapidly absorbed by different tissues of tea plants. Moreover, nano-Mg(OH)2 and composites did not significantly affect non-target organisms. These results show that nano-Mg(OH)2 can serve as a safe and effective biopesticide carrier, which provides a new approach for stable and efficient Bt preparation.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Proteínas Hemolisinas/metabolismo , Chá/metabolismo , Larva , Resistência a Inseticidas
11.
Sci Rep ; 14(1): 5717, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459097

RESUMO

To determine the extent of pesticide buildup and their environmental contamination, the environmental half-lives of pesticides are examined. The influence of the factors affecting the half-lives of fipronil and thiamethoxam including soil type, sterilization, temperature, and time and their interactions was studied using experimental modeling design by Minitab software. Based on the dissipation kinetics data, fipronil concentrations reduced gradually over 60 days while thiamethoxam concentrations decreased strongly. Also, fipronil and thiamethoxam dissipated more rapidly in calcareous soil than in alluvial soil. Thiamethoxam, however, disappeared more rapidly than fipronil in all treatments. Incubation at 50 °C leads to rapid the pesticide degradation. For prediction of the dissipation rate, model 5 was found to be the best fit, Residue of insecticide (%) = 15.466 - 11.793 Pesticide - 1.579 Soil type + 0.566 Sterilization - 3.120 Temperature, R2 = 0.94 and s = 3.80. Also, the predicted DT50 values were calculated by a model, DT50 (day) = 20.20 - 0.30 Pesticide - 7.97 Soil Type + 0.07 Sterilization - 2.04 Temperature. The shortest experimental and predicted DT50 values were obtained from treatment of thiamethoxam at 50 °C in calcareous soil either sterilized (7.36 and 9.96 days) or non-sterilized (5.92 and 9.82 days), respectively. The experimental DT50 values of fipronil and thiamethoxam ranged from 5.92 to 59.95 days while, the modeled values ranged from 9.82 to 30.58 days. According to the contour plot and response surface plot, temperature and sterilization were the main factors affecting the half-lives of fipronil and thiamethoxam. The DT50 values of fipronil and thiamethoxam increased in alluvial soil and soil with low temperature. In general, there is a high agreement between the experimental results and the modeled results.


Assuntos
Inseticidas , Resíduos de Praguicidas , Praguicidas , Pirazóis , Poluentes do Solo , Tiametoxam , Solo , Neonicotinoides , Resíduos de Praguicidas/análise , Inseticidas/metabolismo , Praguicidas/metabolismo , Cinética , Poluentes do Solo/metabolismo
12.
Environ Pollut ; 348: 123853, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552772

RESUMO

Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.


Assuntos
Inseticidas , Perciformes , Poluentes Químicos da Água , Animais , Tiametoxam/metabolismo , Peixe-Zebra/metabolismo , Inseticidas/metabolismo , Microplásticos/toxicidade , Plásticos/metabolismo , Larva , Poliestirenos/metabolismo , Organismos Aquáticos , Poluentes Químicos da Água/metabolismo
13.
Appl Environ Microbiol ; 90(4): e0177823, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470126

RESUMO

The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.


Assuntos
Bacillus thuringiensis , Inseticidas , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacillus cereus/genética , Toxinas de Bacillus thuringiensis , Genoma Bacteriano , Genômica , Inseticidas/metabolismo , Proteínas de Bactérias/química
14.
Environ Pollut ; 347: 123719, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458525

RESUMO

Neonicotinoid insecticides (NNIs) are a new class of widely used insecticides with certain risks to non-target organisms, like earthworms. The gray correlation method was used to calculate the comprehensive risk effect value of acute toxicity (LC50) and bioaccumulation (logKow) of NNIs on earthworms. A comprehensive effects three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed, using NNIs molecular structures and the comprehensive effect value as the independent and dependent variables, respectively. One of the representatives guadipyr (GUA) was selected as the template molecule for the molecular design and modification. A total of 63 NNIs alternatives were designed with a reduced comprehensive value higher than 10%, and as high as 42%. After screening, 15 NNIs alternatives were screened with decreased acute toxicity to earthworms, bioaccumulation effects and improved functional property. The calculated primary acute risk quotient of earthworms shows that the designed NNIs alternatives have lower earthworm risks (reduction of 70.48-99.99%). Results also found that the electronic, geometric and topological parameters of NNIs are the key descriptors that affect NNIs alternatives' toxicity. The number of hydrophobic interaction amino acid residues in NNIs molecules also contributes to the acute toxicity and the bioaccumulation of NNIs alternatives on earthworms. This study aims to design and screen functionally improved and environmentally friendly NNIs alternatives that have low risk to earthworms and provide theoretical methods and new ideas for the risk control and development of pesticides represented by NNIs.


Assuntos
Inseticidas , Oligoquetos , Praguicidas , Animais , Neonicotinoides/química , Inseticidas/metabolismo , Praguicidas/metabolismo , Oligoquetos/metabolismo , Relação Quantitativa Estrutura-Atividade
15.
Insect Biochem Mol Biol ; 168: 104107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492676

RESUMO

The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.


Assuntos
Inseticidas , Mariposas , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Diamida/farmacologia , Resistência a Inseticidas/genética , Mutação , ortoaminobenzoatos/farmacologia , Mariposas/genética , Mariposas/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo
16.
Sci Total Environ ; 921: 171055, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387582

RESUMO

Nanoscale carbon was obtained from six widely used plastics (PET, HDPE, PVC, LDPE, PP and PP) via thermal degradation (600 °C) under inert atmosphere. The thermally degraded products were processed through bath sonication followed by lyophilisation and the same was characterized through proximate analysis, UV-Vis spectroscopy, Scanning electron micrograph (SEM) with energy dispersive X-ray (EDX) analysis, Transmission electron micrograph (TEM), Dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). A series of aqueous solution of nanoscale carbon (5-30 mg/L) were prepared and same were used as both mosquito growth inhibitor and larvicidal agent against 3rd and 4th instar larvae of Culex pipiens. The significant percent mortality results were recorded for LDPE (p < 0.007) with average particle size of 3.01 nm and 62.95 W% of carbon and PS (p < 0.002) with average particle size of 12.80 nm and 58.73 W% of carbon against 3rd instar larvae, respectively. Similarly, for 4th instar larvae, both significant pupicidal and adulticidal activity were also recorded for PET (F = 24.0, p < 0.0001 and F = 5.73, p < 0.006), and HDPE (F = 26.0, p < 0.0001) and F = 5.30, p < 0.008). However, significant pupicidal activity were observed for PVC (F = 6.90, p < 0.003), and PS (F = 21.30, p < 0.0001). Histological, bio-chemical and microscopic studies were revealed that nanoscale carbon causes mild to severe damage of external and internal cellular integrity of larvae. However, nanoscale carbon does not exhibit any chromosomal abnormality and anatomical irregularities in Allium cepa and Cicer arietinum, respectively. Similarly, non-significant results with respect to blood cell deformation were also recorded from blood smear of Poecilia reticulata. Therefore, it can be concluded that plastic origin nanoscale carbon could be a viable sustainable nano-weapon towards control of insects.


Assuntos
Culex , Culicidae , Inseticidas , Nanopartículas Metálicas , Animais , Polietileno/análise , Prata/química , Inseticidas/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Larva/metabolismo , Carbono/análise , Nanopartículas Metálicas/química
17.
Toxicol Appl Pharmacol ; 484: 116847, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336252

RESUMO

Neonicotinoids (NNs) are commonly used pesticides that have a selective agonistic action on insect nicotinic acetylcholine receptors. Recent evidence has shown that NNs have adverse effects in the next generation of mammals, but it remains unclear how NNs transferred from dams to fetuses are distributed and accumulated in fetal tissues. Here, we aimed to clarify the tissue distribution and accumulation properties of the NN clothianidin (CLO) and its 6 metabolites in 7 tissues and blood in both dams and fetuses of mice administered CLO for a single day or for 9 consecutive days. The results showed that the total concentrations of CLO-related compounds in the brain and kidney were higher in fetuses than in dams, whereas in the liver, heart, and blood they were lower in fetuses. The multi-day administration increased the total levels in heart and blood only in the fetuses of the single administration group. In addition, dimethyl metabolites of CLO showed fetus/dam ratios >1 in some tissues, suggesting that fetuses have higher accumulation property and are thus at higher risks of exposure to CLO-related compounds than dams. These findings revealed differences in the tissue-specific distribution patterns of CLO and its metabolites between dams and fetuses, providing new insights into the assessment of the developmental toxicity of NNs.


Assuntos
Inseticidas , Praguicidas , Tiazóis , Camundongos , Animais , Praguicidas/toxicidade , Praguicidas/metabolismo , Distribuição Tecidual , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Feto/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Guanidinas/toxicidade , Guanidinas/metabolismo , Mamíferos
18.
Int J Biol Macromol ; 263(Pt 1): 130271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373570

RESUMO

Overuse of insecticides has accelerated the evolution of insecticide resistance and created serious environmental concerns worldwide, thus incentivizing development of alternative methods. Bacillus thuringiensis (Bt) is an insecticidal bacterium that has been developed as a biopesticide to successfully control multiple species of pests. It operates by secreting several insect toxins such as Cry1Ac. However, metabolic resistance based on ATP-binding cassette (ABC) transporters may play a crucial role in the development of metabolic resistance to Bt. Here, we characterized an ABCG gene from the agricultural pest Plutella xylostella (PxABCG3) and found that it was highly expressed in a Cry1Ac-resistant strain, up-regulated after Cry1Ac protoxin treatment. Binding miR-8510a-3p to the coding sequence (CDS) of PxABCG3 was then confirmed by a luciferase reporter assay and RNA immunoprecipitation. miR-8510a-3p agomir delivery markedly reduced PxABCG3 expression in vivo and consequently decreased the tolerance of P. xylostella to Cry1Ac, while reduction of miR-8510a-3p significantly increased PxABCG3 expression, accompanied by an increased tolerance to Cry1Ac. Our results suggest that miR-8510a-3p could potentially be used as a novel molecular target against P. xylostella or other lepidopterans, providing novel insights into developing effective and environmentally friendly pesticides.


Assuntos
Bacillus thuringiensis , Inseticidas , MicroRNAs , Mariposas , Animais , Mariposas/metabolismo , Larva/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/química , Inseticidas/farmacologia , Inseticidas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
J Agric Food Chem ; 72(7): 3406-3414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329423

RESUMO

The expression of P450 genes is regulated by trans-regulatory factors or cis-regulatory elements and influences how endogenous or xenobiotic substances are metabolized in an organism's tissues. In this study, we showed that overexpression of the cytochrome P450 gene, CYP6CY22, led to resistance to cyantraniliprole in Aphis gossypii. The expression of CYP6CY22 increased in the midgut and remaining carcass of the CyR strain, and after repressing the expression of CYP6CY22, the mortality of cotton aphids increased 2.08-fold after exposure to cyantraniliprole. Drosophila ectopically expressing CYP6CY22 exhibited tolerance to cyantraniliprole and cross-tolerance to xanthotoxin, quercetin, 2-tridecanone, tannic acid, and nicotine. Moreover, transcription factor CF2-II (XM_027994540.2) is transcribed only as the splicing variant isoform CF2-II-AS, which was found to be 504 nucleotides shorter than CF2-II in A. gossypii. RNAi and yeast one-hybrid (Y1H) results indicated that CF2-II-AS positively regulates CYP6CY22 and binds to cis-acting element p (-851/-842) of CYP6CY22 to regulate its overexpression. The above results indicated that CYP6CY22 was regulated by the splicing isoform CF2-II-AS, which will help us further understand the mechanism of transcriptional adaption of cross-tolerance between synthetic insecticides and plant secondary metabolites mediated by P450s.


Assuntos
Afídeos , Inseticidas , Polifenóis , Pirazóis , ortoaminobenzoatos , Animais , Processamento Alternativo , Afídeos/genética , Afídeos/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Isoformas de Proteínas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética
20.
J Agric Food Chem ; 72(8): 4376-4383, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363824

RESUMO

Bactrocera dorsalis is a highly invasive species and is one of the most destructive agricultural pests worldwide. Organophosphorus insecticides have been widely and chronically used to control it, leading to the escalating development of resistance. Recently, odorant binding proteins (OBPs) have been found to play a role in reducing insecticide susceptibility. In this study, we used RT-qPCR to measure the expression levels of four highly expressed OBP genes in the legs of B. dorsalis at different developmental stages and observed the effect of malathion exposure on their expression patterns. The results showed that OBP28a-2 had a high expression level in 5 day old adults of B. dorsalis, and its expression increased after exposure to malathion. By CRISPR/Cas9 mutagenesis, we generated OBP28a-2-/- null mutants and found that they were more susceptible to malathion than wild-type adults. Furthermore, in vitro direct affinity assays confirmed that OBP28a-2 has a strong affinity for malathion, suggesting that it plays a role in reducing the susceptibility of B. dorsalis to malathion. Our findings enriched our understanding of the function of OBPs. The results highlighted the potential role of OBPs as buffering proteins that help insects survive exposure to insecticides.


Assuntos
Inseticidas , Tephritidae , Animais , Malation/farmacologia , Malation/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Odorantes , Tephritidae/genética , Tephritidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...